Application of human-induced pluripotent stem cell derived cardiomyocytes in high-throughput screening assays for drug safety and efficacy testing

Nacken P1, D’Angelo JM2, de Korte T3, Wilbers R1, Famili F1, Braam SR1, Vlaming MLH1

1 Ncardia, Galileiweg 8, 2333 BD Leiden, The Netherlands; 2 Hamamatsu Photonics, 19 Rue du Saule Traps, Parc du Moulin de Massy, 91300, Massy, France

Abstract

There is a pressing need for predictive in vitro assays suitable for high-throughput screening (HTS) to detect cardioactive effects of compounds early in the drug discovery process. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are a relevant in vitro model for this purpose.

We have developed fully functional hiPSC-derived ventricular cardiomyocytes (Pluricyte® Cardiomyocytes) which exhibit a relatively high level of maturity. This was demonstrated by an increased contraction profile, ultra-structural sarcosome organization, as well as improved electrophysiological properties (negative resting membrane potential, well-defined action potential plateau and rapid depolarization) as depicted in Figure 1 and Figure 2. [1]

To assess the potential of Pluricyte® Cardiomyocytes for application in HTS assays (i.e. FDSS/µCELL Functional Drug Screening- and FLIPR Tetra® High-Throughput Cellular Screening assays) we analyzed the effects of different cardioactive compounds (e.g. hERG channel blocker, calcium channel activator, β-adrenergic receptor agonist) on calcium transients and compared these data to well-established, medium-throughput multielectrode array (MEA)/impedance assays.

We conclude that Pluricyte® Cardiomyocytes combined with HTS-compatible assays form a highly relevant model to study pharmacological and toxicological responses of large numbers of drug candidates.

Human Pluricyte® Cardiomyocytes are fully functional and show a relatively high level of maturity

Figure 1. Characteristics of Pluricyte® Cardiomyocytes cultured in Pluricyte® Cardiomyocyte Medium. (A) A typical action potential of Pluricyte® Cardiomyocytes, demonstrating a low resting membrane potential and fast upstroke velocity. (B) Pluricyte® Cardiomyocytes exhibit a high degree of ultra-structural sarcosome organization as determined by immunofluorescence (Green: alpha actinin; Red: myosin heavy chain 7).

Figure 2. A typical waveform of a Pluricyte® Cardiomyocyte monolayer acquired through MEA/impedance analysis. Cell index (i.e. impedance, a surrogate marker for contractility) signal (top) and ECR (i.e. field potential) signal (bottom) enable simultaneous assessment of cardiomyocyte contractility and electrophysiology in a medium-throughput manner. Data was obtained using the xCelligence® RTCA CardiOECR instrument (ACEA Biosciences).

Validation of calcium transient data: Compound effects on the impedance and calcium transient fluorescent signals of Pluricyte® Cardiomyocytes

Figure 3. Pharmacological responses of Pluricyte® Cardiomyocytes to cardioactive compounds measured by calcium transient fluorescent signals and impedance signals. Calcium transient data were obtained using Pluricyte® Cardiomyocytes in combination with the FDSS/µCELL Functional Drug Screening System (upper panel) and the FLIPR Tetra® High-Throughput Cellular Screening Kit (Molecular Devices). Both systems display calcium transient patterns that are in line with the impedance signals measured using the xCelligence® RTCA CardiOECR instrument (lower panel). Positive inotropic effects (Bay K8644), positive chronotropic effects (isoprotanol) as well as proarrhythmic effects (E4031) were detected in both, calcium flux assays and impedance assays.

High-throughput screening of drug-induced alterations in calcium transient fluorescent signals of Pluricyte® Cardiomyocytes using the 384-well FLIPR Tetra® screening system

Table 1. Experimental set-up. The table shows the final test concentrations of different cardioactive compounds: E4031 (hERG channel blocker); Bay K8644 (calcium channel agonist), Nifedipine (calcium channel blocker); Isoprotanol (β-adrenergic receptor agonist) with increasing concentrations from bottom to top. Effects of these compounds on calcium transients in Pluricyte® Cardiomyocytes are presented in Figure 4.

Figure 4. Screenshot of acute compound effects on the calcium transient fluorescent signals of Pluricyte® Cardiomyocytes in 384-well format. The measurement was performed directly after compound addition. The screenshot shows a 60 seconds time scale. In line with the 96-well screening platforms, we could observe: Proarrhythmic effects: Increasing concentrations of E4031 resulted in arrhythmia-like events. Positive inotropic effects: Bay K8644 caused increased peak amplitudes and increased peak widths. Negative inotropic effects: Nifedipine reduced peak amplitudes. Positive chronotropic effects: Isoprotanol caused an increase in beat rate.

Quantification of drug-induced alterations of calcium transient fluorescent signals in Pluricyte® Cardiomyocytes using the 384-well FLIPR Tetra® screening system

Figure 5. Concentration-response curves of cardioactive compounds determined by measuring very acute calcium transient alterations in calcium transients of Pluricyte® Cardiomyocytes using the 384-well FLIPR Tetra® screening system. (A) Blocking of the hERG channel with increasing concentrations of E4031 resulted in arrhythmia-like events. (B) The β-adrenergic receptor agonist Isoprotanol induced an increase in beat rate. (C) Increased concentration of L-type calcium channel blocker nifedipine reduced the calcium transient peak amplitude, eventually leading to complete diminishing of the signal.

Concluding Remarks

- Pluricyte® Cardiomyocytes cultured in Pluricyte® Cardiomyocyte Medium show a ventricular, relatively mature phenotype.
- The calcium transient data using the 96-well as well as the 384-well calcium flux assays could successfully capture the relevant cardioactive effects of the measured test compounds and showed a profile that was in line with the compound effects observed in impedance assays.
- Pluricyte® Cardiomyocytes can be efficiently used to detect positive chronotropic and inotropic effects, as well as proarrhythmic effects of test compounds in a high-throughput calcium transient assay.
- HTS-compatible assays in combination with Pluricyte® Cardiomyocytes form highly useful tools to study pharmacological responses of large numbers of drug candidates.
- Implementation of such tools in drug efficacy studies could further improve the predictivity of early phase drug screenings.

References


Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 730513. Data on the Hamamatsu FDSS/µCELL ionometric plate reader were generated with kind support from Jean-Mari D’Angelo (Hamamatsu Photonics).