Towards prediction of acute and chronic drug effects using multi-parameter profiling of hiPSC-derived cardiomyocytes

De Korte T1, Wilbers R1, Langenberg K1, Nacken P1, Vlaming MLH1, Braam SR1

1Ncardia, Galileiweg 8, 2333 BD Leiden, The Netherlands

Abstract

Standardization and validation of hiPSC-derived cardiomyocyte-based assays for in vitro cardiac safety studies are currently assessed by the Comprehensive in vitro Proarrhythmia Assay (CIPA) consortium. Within CIPA, the acute effects of reference compounds (30±2 minutes after addition) are evaluated. However, besides acute effects on ion channels, especially chronic cardiotoxicity is a serious issue in the clinic.

In this study, we assessed both acute and chronic effects of a set of reference compounds on the electrophysiology and impedance of hiPSC-derived cardiomyocytes (Pluricyte® Cardiomyocytes).

While ion channel inhibitors, e.g. hERG-channel blocker E4031, clearly caused acute drug effects on the electrophysiology of cardiomyocytes, other compounds affected the electrophysiology or impedance only after longer incubation times. For example, lapatinib, a tyrosine kinase inhibitor significantly increased the impedance peak width after 16h (54%, P<0.01) to 24h (114%, P<0.0001) incubations. In addition, the antiprotozoal drug pentamidine did not cause any acute effects, but induced a field potential duration prolongation exclusively from 12 hours after treatment caused by disruption of hERG protein trafficking in Pluricyte® Cardiomyocytes.

Taken together, our results show that studying both acute and chronic drug-effects in hiPSC-derived cardiomyocytes enables a better understanding of the wide range of drug-induced cardiotoxicities that can occur and will help to explain the cellular mechanisms behind late onset drug-induced cardiomyopathy.

Human Pluricyte® Cardiomyocytes are fully functional and show a relatively high level of maturity

Figure 1. Characteristics of Pluricyte® Cardiomyocytes cultured in Pluricyte® Cardiomyocyte Medium. A: A typical action potential of Pluricyte® Cardiomyocytes (measured by PhysiOstim, Lautrec, France), demonstrating a low resting membrane (~75mV) potential and fast upstroke velocity. As expected, L-type calcium channel blocker nifedipine decreased the APD20 (65%), APD90 (46%) and APA (6.2%). B: Pluricyte® Cardiomyocytes exhibit a high degree of ultra-structural sarcomere organization as determined by immunofluorescence (Green: alpha actinin; Red: myosin heavy chain 7).

Figure 2. Typical traces of a Pluricyte® Cardiomyocyte monolayer acquired through MEA/impedance analysis. Cell Index (i.e. impedance, a surrogate marker for contractility) signal (top) and ECR (i.e. field potential) signal (bottom) enable simultaneous assessment of the excitation-contraction coupling and electrophysiology. The field potential traces show robust and well-pronounced depolarization (D) and repolarization (R) peak amplitudes. Data was obtained using the xCELLigence® RTCA CardiOER instrument (ACEA Biosciences).

Ion channel blockers E4031 and nifedipine induce acute effects on the electrophysiology of Pluricyte® Cardiomyocytes

Figure 3. Acute effects of E4031 and nifedipine on the electrophysiology and impedance of Pluricyte® Cardiomyocytes. A: L-type calcium channel blocker, nifedipine, induced a clear decrease in field potential duration and Cell Index amplitude, which is line with the decrease in APD seen in Figure 1A. B: E4031, a hERG channel blocker, induced a concentration-dependent increase of the field potential duration and flattening of the repolarization peak. Arrhythmic-like events were observed at ≥0.1 µM. Measurements were obtained using the xCELLigence® RTCA CardiOER instrument (ACEA Biosciences).

The tyrosine kinase inhibitor, lapatinib, alters the excitation-contraction coupling in Pluricyte® Cardiomyocytes after long term incubation

Figure 5. Long-term effect of lapatinib on the impedance peak width of Pluricyte® Cardiomyocytes. A: Unlike imatinib, lapatinib induced an increase in impedance peak width (ΔT20) after 16h (54%, P<0.01) to 24h (114%, P<0.0001) post-addition, suggesting a long-term effect on the relaxation time of the cardiomyocytes. B: Overlay of impedance waveforms showing an increase in peak width in Pluricyte® Cardiomyocytes after long-term incubation with 3 µM lapatinib. 1 waveform represents the average of all waveforms recorded during one measurement of 60 seconds.

Data was obtained using the xCELLigence® RTCA CardiOER instrument (ACEA Biosciences). All error bars represent SDs. Significance values indicated are the result from Dunnett’s multiple comparisons test, after performing two way ANOVA. * P<0.05, ** P<0.01.

The hERG trafficking inhibitor, pentamidine, induces an increase in field potential duration of Pluricyte® Cardiomyocytes after long term incubation

Figure 6. Long-term effect of pentamidine on the field potential duration of Pluricyte® Cardiomyocytes. A: Pentamidine showed no acute effects on the hERG channel, but after 24 hours of incubation, it significantly increased the field potential duration by disrupting hERG protein trafficking. B: An overlay of field potential traces show an increase in field potential duration and flattening of the repolarization peak of Pluricyte® Cardiomyocytes after 24 hours incubation with 10 µM pentamidine.

Data was obtained using the xCELLigence® RTCA CardiOER instrument (ACEA Biosciences). All error bars represent SDs. Significance values indicated are the result from Dunnett’s multiple comparisons test, after performing two way ANOVA. * P<0.05, ** P<0.01.

Doxorubicin and Geldanamycin affect Pluricyte® Cardiomyocyte cell viability after long-term incubation

Figure 7. Long-term effect of doxorubicin and geldanamycin on the cell viability of Pluricyte® Cardiomyocytes. Since changes in cell morphology and adhesion are reflected by changes in impedance, impedance can be used as a label-free readout for long-term cell viability. A: The anthracycline, doxorubicin, induced a concentration- and time-dependent decrease in cell viability from 12 hours after addition. B: Geldanamycin, an ER-to-Golgi traffic inhibitor, induced a time-dependent decrease in cell viability at 1µM and 10 µM from 12 hours after addition.

Data was obtained using the xCELLigence® RTCA CardiOER instrument (ACEA Biosciences). All error bars represent SDs.

Concluding Remarks

- Pluricyte® Cardiomyocytes cultured in Pluricyte® Cardiomyocyte Medium show a ventricular, relatively mature phenotype.
- The typical long-term effects of anti-cancer drugs and (hERG) trafficking inhibitors are observed in Pluricyte® Cardiomyocytes by measuring the impedance, field potential or cell viability in a long-term, label-free and real-time manner.
- Studying both acute and long-term cardioactive effects in hiPSC-derived cardiomyocytes using a multi-parameter approach could provide a more detailed cardiotoxicity profile of (novel) compounds. This approach will further improve safety pharmacology decision-making at an early stage of drug development.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 762513.

Patch clamp data were kindly provided by PhysiOstim (Lautrec, France).